If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+14n-91=0
a = 1; b = 14; c = -91;
Δ = b2-4ac
Δ = 142-4·1·(-91)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{35}}{2*1}=\frac{-14-4\sqrt{35}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{35}}{2*1}=\frac{-14+4\sqrt{35}}{2} $
| |3x−4|=|3x−5|. | | 12g+6=14g | | x^2=12x-36=0 | | T=5s+3.42 | | 3G-6+2g+1=11 | | 2(1-2x)=x-3 | | 14=-2k+4 | | (3y+44)=86 | | 0.4w=-6 | | v=22*0.28+2.2 | | 0.21n=2.31 | | (3x-2)/2+5=10 | | 5(x–5)=15 | | (3y+44)-94=180 | | 7/n=28/12 | | 1/12y+2=-14 | | v=0.28*0+2.2 | | 3(x-4)+4x=-5x-2 | | 1/9y+4=-10 | | 3+0.14285714285x=5 | | 5=9x-16 | | 24-5x=54-10x | | 4,5-14=6x+1,5 | | -36=6(2x-1 | | 0.5x=6.4=4.9-0.1 | | 6x+3=9(x-1) | | 16=c/20=19 | | 6x+6(5x+13)=-6 | | 9^x+3^3+1-4=0 | | 5×(w+8)-7=103 | | 2|x+6|-5=5 | | 7w–4w=15 |